

## Eruptive stars spectroscopy Cataclysmics, Symbiotics, Nova Supernovae



ARAS Eruptive Stars Information Letter n° 22 #2015-10 15-01-2016 Observations of December 2015

#### **NEWS**

Contents

#### New outburst of the microquasar V404 Cyg in December Novae

No spectroscopy of novae in December

## **Symbiotics**

CH Cyg : Ongoing campaign AG Peg : secondary outburst, declining CI Cyg : increasing luminosity in V band

AX Per, BD Cam, EG And, V627 Cas, V 694 Mon, Z And, ZZ CMi

CI Cygni : 5 years of monitoring

#### Microquasars

V404 Cyg : observation of the second outburst in 2015 by P. Somogyi

Authors : F. Teyssier, S. Shore, P. Somogyi, D. Boyd, J. Guarro Flo, P. Berardi, C. Kreider, T. Tordai

"We acknowledge with thanks the variable star observations from the AAVSO International Database contributed by observers worldwide and used in this letter." Kafka, S., 2015, Observations from the AAVSO International Database, http://www.aavso.org

## Symbiotics in December

| CH Cygni : | remains at high state Mag V ><br>The observed profiles of Balmer lines in Decmeber show a classical<br>shape with central absorption, and no absorptions in the blue edge of<br>the line |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AG Peg :   | declining during the secondary outburst.                                                                                                                                                 |
| CI Cyg :   | luminosity increases in V band with fast evolution of the shapes of<br>Balmer lines                                                                                                      |
| V694 Mon : | narrow absorption (Vmax = 1100 km/s)                                                                                                                                                     |

#### **Observing : main targets**

Ungoing campaign : CH Cygni for A Skopal (low resolution and H alpha profile at R > 10000)

AG Peg during the decline of its secondary outburst CI Cyg : evolution of Balmer lines AX Per

V694 Mon

# SYMB-OT-CS

#

1

2

#### Symbiotics in ARAS Data Base Update : 08-01-2015

Name AD (2000) DE (2000) Nb. Of spectra First spectrum Last spectrum Last Spectrum(days) EG And 0 44 37.1 40 40 45.7 12/08/2010 26/12/2015 34 14 04/10/2011 02/01/2016 AX Per 1 36 22.7 54 15 2.5 68 7

| 3  | o Ceti    | 2 19 20.7  | -2 58 39.5  |     |            |            |     |
|----|-----------|------------|-------------|-----|------------|------------|-----|
| 4  | BD Cam    | 3 42 9.3   | 63 13 0.5   | 9   | 08/11/2011 | 28/11/2015 | 42  |
| 5  | UV Aur    | 5 21 48.8  | 32 30 43.1  | 34  | 24/02/2011 | 02/01/2016 | 7   |
| 6  | V1261 Ori | 5 22 18.6  | -8 39 58    |     |            |            |     |
| 7  | StHA 55   | 5 46 42    | 6 43 48     |     |            |            |     |
| 8  | ZZ CMi    | 7 24 13.9  | 8 53 51.7   | 25  | 29/09/2011 | 03/01/2016 | 6   |
| 9  | BX Mon    | 7 25 24    | -3 36 0 24  |     | 04/04/2011 | 31/12/2015 | 9   |
| 10 | V694 Mon  | 7 25 51.2  | -7 44 8 66  |     | 03/03/2011 | 31/12/2015 | 9   |
| 11 | NQ Gem    | 7 31 54.5  | 24 30 12.5  | 27  | 01/04/2013 | 03/12/2015 | 37  |
| 12 | GH Gem    | 744.9      | 12 2 12     |     |            |            |     |
| 13 | CQ Dra    | 12 30 06   | 69 12 04    | 1   | 11/06/2015 | 11/06/2015 | 212 |
| 14 | TX CVn    | 12 44 42   | 36 45 50.6  | 22  | 10/04/2011 | 31/12/2015 | 9   |
| 15 | IV Vir    | 14 16 34.3 | -21 45 50   | 3   | 28/02/2015 | 09/05/2015 | 245 |
| 16 | T CrB     | 15 59 30.1 | 25 55 12.6  | 62  | 01/04/2012 | 31/12/2015 | 9   |
| 17 | AG Dra 1  | 6 1 40.5   | 66 48 9.5   | 60  | 03/04/2013 | 31/12/2015 | 9   |
| 18 | V503 Her  | 17 36 46   | 23 18 18    | 1   | 05/06/2013 | 05/06/2013 | 948 |
| 19 | RS Oph    | 17 50 13.2 | -6 42 28.4  | 16  | 23/03/2011 | 16/09/2015 | 115 |
| 20 | V934 Her  | 17 6 34.5  | 23 58 18.5  | 9   | 09/08/2013 | 20/06/2015 | 203 |
| 21 | AS 270    | 18 05 33.7 | -20 20 38   | 2   | 01/08/2013 | 02/08/2013 | 890 |
| 22 | AS 289    | 18 12 22   | -11 40 13   |     |            |            |     |
| 23 | YY Her    | 18 14 34.3 | 20 59 20    | 17  | 25/05/2011 | 07/09/2015 | 124 |
| 24 | FG Ser    | 18 15 6.2  | 0 18 57.6   | 3   | 26/06/2012 | 24/07/2014 | 534 |
| 25 | StHa 149  | 18 18 55.9 | 27 26 12    | 3   | 05/08/2013 | 14/10/2015 | 87  |
| 26 | V443 Her  | 18 22 8.4  | 23 27 20    | 20  | 18/05/2011 | 19/07/2015 | 174 |
| 27 | FN Sgr    | 18 53 52.9 | -18 59 42   | 4   | 10/08/2013 | 02/07/2014 | 556 |
| 28 | V335 Vul  | 19 23 14.2 | 24 27 40.2  |     |            |            |     |
| 29 | BF Cyg    | 19 23 53.4 | 29 40 25.1  | 71  | 01/05/2011 | 07/11/2015 | 63  |
| 30 | CH Cyg    | 19 24 33   | 50 14 29.1  | 321 | 21/04/2011 | 30/12/2015 | 10  |
| 31 | V919 Sgr  | 19 3 46    | -16 59 53.9 | 2   | 10/08/2013 | 10/08/2013 | 882 |
| 32 | V1413 Aql | 19 3 51.6  | 16 28 31.7  | 5   | 10/08/2013 | 26/09/2015 | 105 |
| 33 | HM Sge    | 19 41 57.1 | 16 44 39.9  | 7   | 20/07/2013 | 11/11/2015 | 59  |
| 34 | QW Sge    | 19 45 49.6 | 18 36 50    |     |            |            |     |
| 35 | CI Cyg    | 19 50 11.8 | 35 41 3.2   | 102 | 25/08/2010 | 26/12/2015 | 14  |
| 36 | StHA 169  | 19 51 28.9 | 46 23 6     |     |            |            |     |
| 37 | V1016 Cyg | 19 57 4.9  | 39 49 33.9  | 7   | 15/04/2015 | 01/11/2015 | 69  |
| 38 | PU Vul    | 20 21 12   | 21 34 41.9  | 14  | 20/07/2013 | 23/11/2015 | 47  |
| 39 | LT Del    | 20 35 57.3 | 20 11 34    |     |            |            |     |
| 40 | ER Del    | 20 42 46.4 | 8 40 56.4   | 3   | 02/09/2011 | 05/11/2014 | 430 |
| 41 | V1329 Cyg | 20 51 1.1  | 35 34 51.2  | 4   | 08/08/2015 | 26/09/2015 | 105 |
| 42 | V407 Cyg  | 21 2 13    | 45 46 30    |     |            |            |     |
| 43 | StHA 190  | 21 41 44.8 | 2 43 54.4   | 14  | 31/08/2011 | 08/11/2015 | 62  |
| 44 | AG Peg    | 21 51 1.9  | 12 37 29.4  | 158 | 06/12/2009 | 02/01/2016 | 7   |
| 45 | V627 Cas  | 22 57 41.2 | 58 49 14.9  | 9   | 06/08/2013 | 30/12/2015 | 10  |
| 46 | Z And     | 23 33 39.5 | 48 49 5.4   | 54  | 30/10/2010 | 30/12/2015 | 10  |
| 47 | R Aqr     | 23 43 49.4 | -15 17 4.2  | 26  | 25/09/2010 | 21/11/2015 | 49  |
|    |           |            |             |     |            |            |     |

## CH Cyg



In December, CH Cygni remains in high state; flickering between 6.6 and 7.4 in V band. Ungoing observations in ARAS database : the H alpha profile is classical on all the observations with only a deep central absorption. No phenomenon of multiple absorption in the blue edge of the line.



#### AAVSO V in 2015 and ARAS spectra (blue dots)

221 spectra (from R = 600 to 20000) have been collected in ARAS Database in 2015 upon the request of A. Skopal



CH Cyg Hb region by Peter Somogyi with a LHIRES III 600 I/mm at R = 2600

## CH Cyg



0 0 500 velocity (km/s)

## AG Peg

| Coordinates (2000.0) |  |  |  |
|----------------------|--|--|--|
| 21 51 02.0           |  |  |  |
| +12 37 32.1          |  |  |  |
|                      |  |  |  |



#### AAVSO V in 2015 and ARAS spectra (blue dots)

The first symbiotic outburst observed for AG Peg began ~ 7th of June from V = 8.4 and raised V = 6.9 about the 30th of June (Delta mag ~ 1.5). The system declined to mag V ~ 8.0 (2d of October) and undergone a secondary outburst, reaching V ~ 7.4, the 09-10-2015 (Delta V ~ 0.6) before declining again in two steps (Mag V = 8.0 at the end of December, 2015).

116 spectra (from R = 600 to 20000) have been collected in ARAS Database in 2015.



Low resolution spectrum from Christian Kreider with an Alpy The Raman OVI band appears clearly





## AG Peg : the secondary outburst throw eshel spectra

The monitoring of the secondary outburst of AG Peg at R = 11000 shows clearly the vanashing of high excitation lines such as [Fe VII] 6087 or OVI Raman 6830 during the outburst

| Date       | Time  | J.D.        | Res.  | l min |
|------------|-------|-------------|-------|-------|
| 01/10/2015 | 19:48 | 2457297.335 | 11000 | 4370  |
| 08/10/2015 | 20:23 | 2457304.355 | 11000 | 4400  |
| 11/10/2015 | 18:41 | 2457307.284 | 11000 | 4209  |
| 13/10/2015 | 18:38 | 2457309.284 | 11000 | 4220  |
| 20/10/2015 | 19:55 | 2457316.334 | 11000 | 4209  |
| 25/10/2015 | 17:55 | 2457321.255 | 11000 | 4209  |
| 01/11/2015 | 18:30 | 2457328.275 | 11000 | 4210  |
| 13/11/2015 | 17:58 | 2457340.256 | 11000 | 4209  |
| 25/11/2015 | 19:13 | 2457352.306 | 11000 | 4209  |
| 07/12/2015 | 19:19 | 2457364.309 | 11000 | 4200  |
| 12/12/2015 | 19:16 | 2457369.31  | 11000 | 4210  |
| 23/12/2015 | 17:38 | 2457380.238 | 11000 | 4210  |
| 29/12/2015 | 18:16 | 2457386.266 | 11000 | 4287  |
|            |       |             |       |       |



Log of observations. F. Teyssier EShel SC 14"



AAVSO V light curve and spectra (blue dots)





Equivalent width OVI Raman 6830 and [Fe VII] 6087



Equivalent width the singlet He I 6678 and triplet He I 7065

Other lines and results : http://www.astronomie-amateur.fr/feuilles/Spectroscopie/SyS/AGPeg\_2.html

**AX Per** 

 Coordinates (2000.0)

 R.A.
 1 36 22.7

 Dec
 54 15 2.5

 Mag
 11.3 (V)

Increasing luminosity (V) between 20-12 and 29-12 from V = 11.4 to 11.0 (+0.4)





**AX Per** 

S



6800

6800



## **AX Per**







## **BX** Mon

| Coordinates (2000.0) |             |  |
|----------------------|-------------|--|
| R.A.                 | 07 25 22.8  |  |
| Dec                  | -03 35 50.8 |  |
| Mag                  |             |  |



Hα line 2015-12-31.912 Lhires III 2400 l/mm R = 15000



# CI Cyg

| Coordinates (2000.0) |            |  |
|----------------------|------------|--|
| R.A.                 | 19 50 11.8 |  |
| Dec                  | 35 41 3.2  |  |
| Mag                  | 10.8 (V)   |  |



Increasing luminosity in November/ December

Fast change of Balmer profiles. See the delay between Ha and Hb variations

Spectra : F. Teyssier - eShel - R = 11000



10.5

# CI Cyg



# SYMBIOTICS

#### 500 2015-12-3 2015-11-3 2015-10-3 2015-09-2015-09-0 2015-09-2015-12= 6087 250 velocity (km/s) VII] Б Г 0 сyg -250 ч. -500 18 1 6 14 12 10 9 $\infty$ 4 $\sim$ τεlative intensity) 500 015-09-02 2015-12-20 2015-09-1 $\frac{1}{2}$ | [0 III] 5007 250 velocity (km/s) 0 cyg с С -250 -500 30 25 20 15 10 ഹ 0 τεlative intensity) 500 v M M 2015-09-02 2015-12-2 2015-12-1 2015-09-2015-13 3 2015-0 [O I] 6300 250 MMMM velocity (km/s) cyg MM/~~ ы. С -250 -500 0 $\circ$ $\infty$ $\sim$ 9 ഹ $\sim$ $\sim$ 4 $\leftarrow$ τεlative intensity)

CI Cyg

## CI Cyg Long term monitoring 1/2

Here's an update of a long term monitoring of the classical symbiotic CI Cygni. It begings in 2011 after the 2010 outburst of this system. 130 Spectra at R ~ 1000 : - 2011-2014 : F. Teyssier - 2015 : D. Boyd - J. Guarro Flo Spectra are dereddened for E(B-V) =0.4 Ephemeris according Fekel & al., 2000 JD0 = 2442690 E=853.8 days We adopted : Phase 0 = 27/10/2010 (JD 2455497 ) Phase 1 = 27/02/2013 (JD 2456350.8) Phase 2 = 01/07/2015 (JD 2457204.6)









## CI Cyg Long term monitoring 2/2



Temperature deduced from He II and He I intensity Blue : orbit #1 Red : orbit #2 Green : orbit #3

## EG And

| Coordinates (2000.0) |            |  |
|----------------------|------------|--|
| R.A.                 | 0 44 37.1  |  |
| Dec                  | 40 40 45.7 |  |
| Mag                  | 7.4        |  |

H alpha and He I 5876 evolution in 5 months, from late August to December, 2015 eShel spectra R = 11000 F. Teyssier





## T CrB

| Coordinates (2000.0) |             |  |
|----------------------|-------------|--|
| R.A.                 | 15 59 30.2  |  |
| Dec                  | +25 55 12.6 |  |
| Mag                  | 9.8         |  |





## TX CVn

| Coordinates (2000.0) |             |  |
|----------------------|-------------|--|
| R.A.                 | 12 44 42.1  |  |
| Dec                  | +36 45 50.7 |  |
| Mag                  | 10.0        |  |



## V627 Cas

| Coord | Coordinates (2000.0) |            |  |
|-------|----------------------|------------|--|
| R.A.  |                      | 22 57 41.2 |  |
| Dec   |                      | 58 49 14.9 |  |
| Mag   |                      | 12.7 (V)   |  |
|       |                      |            |  |







#### V694 Mon

| Coordinates (2000.0) |               |  |
|----------------------|---------------|--|
| R.A.                 | 07 25 51.3    |  |
| Dec                  | -07 44 08.1   |  |
| Mag                  | 9.8 (12-2015) |  |

V mag = 9.8 from last data in AAVSO database Narrow absorption (v max = -1100 km.s<sup>-1</sup>) in Peter Somogyi spectrum



1

-1000

0

velocity (km/s)

1000

2000

S

## Z And

| Coordinates (2000.0) |            |  |
|----------------------|------------|--|
| R.A.                 | 23 43 49.4 |  |
| Dec                  | 48 49 5.4  |  |
| Mag                  | 10.1       |  |





## ZZ CMi

| Coordinates (2000.0) |             |
|----------------------|-------------|
| R.A.                 | 07 24 14.0  |
| Dec                  | +08 53 51.8 |
| Mag                  | 10.2        |
|                      |             |







Peter Somogyi Lhires III 600 I/mm R = 3500



H alpha profile

# V404 Cyg



#### **Optical spectroscopy of V404 Cyg during its latest outburst**

The Astronomer's Telegram

ATel #8508; Peter Somogyi on 6 Jan 2016; 02:28 UT Credential Certification: S. N. Shore (shore@df.unipi.it)

Low resolution spectra were obtained during the current outburst (announced in ATel #8453) of the microquasar V404 Cyg. Ten 600 sec exposures were obtained on 2015 Dec. 31 (JD 2457388.202 - 0.27) with a 250 mm Newtonian reflector using an LHires III spectrograph with 150 line/mm grating (R ~ 500) spanning 4500-7500A with the combined S/N ~ 10 (continuum at 6000A; calibration used the standard HD192640). The spectrum showed strong Halpha emission with EW = 104+/-10A and He I 5876 with EW = 21+/-2A. Weak but detectable emission was also present at He I 6678 and 7065. The spectrum was deconvolved using the Richardson-Lucy algorithm and a gaussian lsf. The recovered Halpha FWZI was 2300 km/s, the He I 5876 FWZI was similar. The lower limit for Halpha/Hbeta ratio was about 4, uncorrected for reddening. Using the extinction obtained by Hynes et al. (2009, MNRAS, 399, 2239) of E(B-V)=1.3 a power law fit to the continuum (in wavelength) gives an exponent of -1.6+/-0.1. No statistically significant line variations were detectable among the individual spectra. The data are available through the ARAS Spectral Database and further observations are planned.

#### A.R.A.S Spectral Data Base

See also : https://www.aavso.org/aavso-observers-contribute-understanding-black-hole-binary-v404-cygni

V404 Cyg



Green : V band photometry obtained by Tamas Tordai Red : Spectra obtained by Peter Somogyi



Log of observation JD = 2457388 +

1.: .2019 - .2089 2.: .2096 - .2166 3.: .2166 - .2236 4.: .2236 - .2306 5.: .2306 - .2376 6.: .2375 - .2445 7.: .2445 - .2515 8.: .2515 - .2585 9.: .2585 - .2654 10: .2654 - .2724



Deconvolution of H alpha profile and deredded spectrum by Steve Shore (See above)

... the most important result is the He I sequence. ... the lines are He I 5876, 6678, 7065. Their widths are consistent with the Balmer lines. The Hbeta line is weakly present, Halpha/Hbet > 4 is a good measure of the extinction. The study by Hynes et al. (http://arxiv.org/pdf/0907.4376v1.pdf) gives  $A_V = 4.04$  (with a rather large range) so E(B-V)=1.3. Using that, the extinction corrected spectrum is the one I've attached (normalized at 5000A for the uncorrected spectrum). For the equivalent widths, EW(Halpha)=104+/-10A, EW(5876)=21+/-2A (in both cases the estimate is about 10% uncertainty, the individual measurmemnts are more precise but not "accurate"), and the FWZI width for both lines is about 3000A. That's a problem because of the resolution but deconvolving gives a better estimate, 2000 km/s. I'm enclosing the plot. The dashed line is the original Halpha profile, the solid line is the deconvolved profile. The total flux is the same, a constraint on the algorithm (this is a Richardson-Lucy procedure that is very stable, even with this S/N ratio).

## A small tutorial on spectral types, colors, and effective temperatures

#### **Steve Shore**

#### 1 Spectral classification - static atmospheres

A great success of spectroscopy, one of the first things realized in the 19th century when observing stars, was the development of a separation scheme for distinguishing the complexity of the absorption line distribution. You can order the *complexity* of the spectra and then link the line behavior with changes in the thermodynamic state of the gas (ionization, excitation, and so on). The problem of winds, extended structures, and nonlocal radiation because of scattering and external illumination we've already discussed (e.g. the Raman scattering lines, remember?). But to capture all of this information in a few symbols is an amazing power of spectroscopy -- applied to normal objects -- and one that serves well in a very broad sense to distinguish the normal from the bizarre. We can link the spectral properties to the luminosities and temperatures of the photospheres in different wavelength regimes and, from this, obtain estimates of masses and even abundances. All of this is the standard stuff of textbooks. But there are issues that you, as the *new generation* of spectroscopists, might think about. The change in mindset that coms from being able to obtain flux calibrated spectra, and the soon to be available parallaxes from Gaia (and already available from Hipparcos) can lead to new insights that are often impeded by the use of older tmethods of analyzing the data. Let me be specific, an I hope this will make sense.

#### 2 Colors

The standard system we've known and loved for over 70 years, the broadband minimal filter set called the *Johnson-Morgan UBV* system, was created top address a specific need, born from desperation. In the post-WW II period, although telescope spectrographs had improved, the most important new instrument introduced to astronomers was the photoelectric photmultiplier tube. Specifically, the 1P21 photocathode developed by RCA and associated electronics had been invented for registering weak light signals with high counting rates and broadband sensitivity. Because it is a low noise detector, especially when cooled in a bath of dry ice, the photomultiplier tube (PMT) it i a photon counting device (i.e. registers pulses each of which corresponds to the arrival of a single photon and the liberation of a cloud of electrons depending on the energy of the absorbed light) it could be provide something unmeasurable with very nonlinear and individual photographic emulsions: actual fluxes. In other words, photometry provides absolute information that can only be obtained relatively from photographic spectra. You're used to normalizing continua and measuring the equivalent widths of absorption (or emission) lines. This is a relative flux measurement and similar to magnitudes for which you neither know nor care about the zero point. A PMT can, instead, be pointed toward a known light source nd then through the same telescope and optics observe a celestial object with the two then being precisely calibrated. Now we use CCDs and other photon counting linear devices so it may seem a very distant epoch when that wasn't possible. But the CCD was only introduced in the 1980's, buy which time PMTs had a long heritage. In the 1920s, Stebbins had experimented with some kind of color measurement knowing that the continuum distribution (spectral energy distribution, SED) can be characterized by a few single filters placed in front of a plate. This was the color index and, estimating the brightness of images on the plates and two filters one could recover the information in the Hertzprung-Russell diagram. At least in a general way. The problem of the stability of the color measurements, even from on observation to other, came from the development process for the photographs. The PMT was a way around that and promised a stable way of obtaining colors and magnitudes.

Morgan, who had refined the Harvard spectral types by adding measure of the line widths for surface gravities, hence luminosities, to the temperature sequence, wanted to distinguish stars, to apply some sort of classification-like index-based method, using a minimal set of filters that captured the complexity of the *lines* and continua. Since most stars have a small set of strong lines in the visible, the Balmer and helium lines from neutral atoms, Ca II, Na I, and

#### A small tutorial on spectral types, colors, and effective temperatures

#### **Steve Shore**

he broader distribution of metallic absorbers (e.g. Fe II, Mn II) and molecules (e.g. TiO, ZrO, VO), looking at the line distributions he chose a three central wavelengths and moderate bandwidths (resolutions of about 5) to cover the spectrum from 3300 - 8000 \AA. This is a wider range than anything available from single photographic emulsions. The three filters, UBV, were chosen to span the Balmer discontinuity (the ionization edge at 3647 Å), Ca II H and K, and the line convergence, one that included the He I, Si II, and Balmer lines (H $\beta$ , H $\gamma$ ), and one that was free of Balmer lines. The widths were chosen to approximately cover the continuum and used available glasses and matched the 1P21 response curve. The project was given to his graduate student Johnson, and the result was a measurement of the UBV magnitudes and colors (U-B, B-V) for a few thousand stars for which MK classifications were available. Then the link was made between the mean colors (not magnitudes) and the spectral type of the stars. Th sample was moderate and the result depended on eliminating the effects of reddening, but in th end a correspondence was obtained. This as later (in 1982) further improved by Schimidt-Kaler and this is now the standard. To extend the power of the photometry, Strömgren (1960's) further narrowed the bandpasses and increased their number to four, uvby, to include more detail of the individual strong line transitions. The Geneva Observatory system used seven filters and an automatic recoding procedure with absolute calibration of the photometr, and there are many others. The main point is that all o this was to find a minimal, sensitive means for obtaining the qualitative information provided by spectral types and the quantitative information about luminosities and, perhaps, temperatures.

There are several combinations that reduce or remove the effects o the interstellar dust on the colors, indices formed of filter combinations, whose aim was to recover the intrinsic spectral distribution in absence of information about the spectral types. Remember, an O star seen through enough junk in the ISM can be as red as an M star but will have an almost featureless spectrum at low resolution (look at the novae in the database toward the Galactic center or toward the anticenter, you'll see the difference immediately). So this method works because -- and only because -- the spectral types are meaningful. The color excess, E(B-V) can be derived for *normal* spectra because there's a stable atmosphere producing them. For novae, cataclysmics, symbiotics, and even AGN, this just isn't so.

In other words, filter photometry is the lowest resolution form of spectrophotometry and requires throwing away all of the information obtained from CCD spectra. The *only* advantage is its brightness limit. A spectrum with a resolution of 10,000, compared to bands with the resolution of about 10 (for narrow bands) is about 8 mags less sensitive (because of the dispersion and light per pixel) so what takes some time for you would take a factor of 30 times less for filter photometry. But the information contained in the calibrated CCD spectra is completely lost, indeed unrecoverable. Now with multi-fiber spectrographs, even the multiple object (broad field) advantage of photometry is vastly reduced. The only exception is imaging but eventual will come eventually for spectroscopy. The objective prism, which became the focal plane grism like that used for the Sloan Survey, is the bridge between the two methods.

The main point here is that the limits of photometry are also its advantages, it reduces the information content but permits absolute flux measurements. But any advantage is severely limited by the requirement that the objects behave in a standard, taxonomically stable way. Novae, supernovae, even LBVs and strong wind objects, don't.

#### **3** Effective temperature

This is, I think, the most misunderstood concept in spectroscopy and photometry so please pardon my obsessive description here. The question came from one of my students last week and I realized it might have occurred to you too.

If we measure a flux, it's at a single wavelength  $\lambda$  so

is  $F_{\lambda}$ . OK, no big deal. We measure a few of these, put them together, and obtain the bolometric flux F. Knowing the radius (which we rarely do) we can then obtain the luminosity by multiplying by the surface area. For MK spectral types, this is the same as taking the luminosity class to obtain the gravity and the photometry to give you the flux and a mass calibration from somewhere to convert surface gravity to radius. Then the slope of the continuum, B-V and U-B, are linked to some sort of temperature, really the P color temperature so calling it a temperature you can separate stars according to their and  $T_{color}$ . But knowing the input flux in absolute units and the surface gravity, a modeler can compute a theoretical atmospheric structure in pressure and thermal equilibrium, including all the lines and continuum processes we've talked about, and obtain a predicted spectrum. It doesn't matter what the temperature of the input flux is, it only maters that you know the surface gravity and luminosity and you can then define the effective temperature as the root ratio  $T_{eff} = (L/[surface area])^{1/4}$ . Since the total integrated flux is constant throughout the atmosphere, only the SED changes with depth, this number is a global characteristic of the emergent spectrum. It is not the real temperature of the gas, in general, we've already discussed all of the caveats regarding the thermal equilibrium and weird level populations that result from low densities and scattering processes (not absorptions and collisions), but the emergent spectrum can be said to have an associated radiation temperature. The computed spectrum is then compared with those of real stars for which spectral types have been assigned and vuoi la, you have a correspondence between the B-V and  $T_{_{off}}$ .

This is *not* the same as the kinetic temperature of the atoms, or their excitations, unless the stellar atmosphere corresponds to the physical conditions as-

sumed in the model. This is why I've been persistently recalling, when discussing any of the weirder systems that are time dependent and dynamical, that the physical conditions depart from those for which such numbers are meaningful. These global measures are not independent, for instance, of the abundances of individual elements that contribute lines and ionization continua to the spectra, nor the are the effects of scattering included, so the  $T_{eff}$  is *not* the same as a blackbody emissivity measure.

The stability of classification derives from the stability of the atmospheres that produce those spectra. So there is a link to this measurement and it's useful as a way of encapsulating the SED so it's not something to be thrown away. But to talk about it as anything bu an ordering of the spectral complexity is to give it more physical power than it possesses.

Final comments for this installment

In the next installment, I promise to explain in more detail how models are produced for normal stellar spectra and for accretion disks. I know this gets heavy at times, and ask your pardon and for your patience. The aim is to put what you're doing in a broader context and provide a guide to the literature. And, perhaps, to expose the underbelly of the business so you'll be able to go farther than many of the professionals.

And once again, very best wishes for the new year, my dear friends.

Steve Shore, 14-01-2016

## **Symbiotics**

#### Evolved stars as donors in symbiotic binaries

A. Skopal, M. Sekeras, N. Shagatova Proceedings from the conference: "The Physics of Evolved Stars: A Conference Dedicated to the Memory of Olivier Chesneau" Journal-ref: EAS Publications Series, Volume 71-72, 2015, pp.189-192 http://arxiv.org/pdf/1512.08803.pdf

#### The Bright Symbiotic Mira EF Aquilae

Bruce Margon, J. Xavier Prochaska, Nicolas Tejos, TalaWanda Monroe Accepted for publication in Publications of the Astronomical Society of the Pacific, Volume 128 (2016) http://arxiv.org/ftp/arxiv/papers/1512/1512.04075.pdf

#### Spectroscopic view on the outburst activity of the symbiotic binary AG Draconis

Laurits Leedjärv, Rudolf Gális, Ladislav Hric, Jaroslav Merc, Maria Burmeister Accepted to MNRAS http://arxiv.org/pdf/1512.03209.pdf

# New Photometric Observations and the 2015 Eclipse of the Symbiotic Nova Candidate ASAS J174600-2321.3

Franz-Josef Hambsch, Stefan Hümmerich, Klaus Bernhard, Sebastián Otero Accepted for publication in JAAVSO http://arxiv.org/ftp/arxiv/papers/1512/1512.01467.pdf

# **Recent publications**

# EF Aql

Identified as a new symbiotic (Mira) A nice target for Alpy and Lisa in 2016

| Coordinates (2000.0) |             |
|----------------------|-------------|
| R.A.                 | 19 51 51.7  |
| Dec                  | -05 48 16.6 |
| Mag                  | 12.4-15.5   |

#### The Bright Symbiotic Mira EF Aquilae

Bruce Margon, J. Xavier Prochaska, and Nicolas Tejos Publications of the Astronomical Society of the Pacific Volume 128, 2016 http://arxiv.org/ftp/arxiv/papers/1512/1512.04075.pdf

#### Abstract

An incidental spectrum of the poorly studied long period variable EF Aquilae shows [O III] emission indicative of a symbiotic star. Strong GALEX detections in the UV reinforce this classification, providing overt evidence for the presence of the hot subluminous companion. Recent compilations of the photometric behavior strongly suggest that the cool component is a Mira variable. Thus EF Aql appears to be a member of the rare symbiotic Mira subgroup.

Other data : 12.4 < V < 15.5 (GCVS) Period of 329.4 d, with amplitude >2.4 mag. Classification : Mira. Richwine et al. (2005)



#### Definition of Symbiotic Star

in A catalogue of symbiotic stars, K. Belczynski, J. Mikolajewska, U. Munari, R. J. Ivison, and M. Friedjung (2000)

To classify an object as symbiotic star we adopted the following criteria:

1. The presence of the absorption features of a late-type giant; in practice, these include (amongst others) TiO, H2O, CO, CN and VO bands, as well as Ca I, Ca II, Fe I and Na i absorption lines.

2. The presence of strong emission lines of H I and He I and either – emission lines of ions with an ionization potential of at least 35eV (e.g. [O III]), or – an A- or F-type continuum with additional shell absorption lines from H i, He i, and singly-ionized metals. The latter corresponds to the appearance of a symbiotic star in outburst.

3. The presence of the  $\lambda$  6825 emission feature, even if no features of the cool star (e.g. TiO bands) are found.



#### **About ARAS initiative**

Astronomical Ring for Access to Spectroscopy (ARAS) is an informal group of volunteers who aim to promote cooperation between professional and amateur astronomers in the field of spectroscopy.

To this end, ARAS has prepared the following roadmap:

Identify centers of interest for spectroscopic observaeffective and motivating cotion which could lead to useful, operation between professional and amateur astronomers. • Help develop the tools required to transform this cooperation into action (i.e. by publishing spectrograph building plans, organizing group purchasing to reduce costs, developing and validating observation protocols, managing a data base, identifying available resources in professional observatories (hardware, observation time), etc. •Develop an awareness and education policy for amateur astronomers through training sessions, the organization of pro/am seminars, by publishing documents (web pages), managing a forum, etc. • Encourage observers to use the spectrographs available in mission observatories and promote collaboration between experts, particularly variable star experts.

• Create a global observation network.

By decoding what light says to us, spectroscopy is the most productive field in astronomy. It is now entering the amateur world, enabling amateurs to open the doors of astrophysics. Why not join us and be one of the pioneers!

#### **Be Monthly report**

Previous issues : http://www.astrosurf.com/aras/surveys/beactu/ index.htm

#### VV Cep campaign

http://www.spectro-aras.com/forum/viewforum.php?f=19

## Submit your spectra

Please :

respect the procedure
check your spectra BEFORE sending them Resolution should be at least R = 500
For new transcients, supernovae and poorly observed objects,
SA spectra at R = 100 are welcome

1/ reduce your data into BeSS file format2/ name your file with:\_ObjectName\_yyyymmdd\_hhh\_Observer

Exemple: \_chcyg\_20130802\_886\_toto.fit

3/ send you spectra to Novae, Symbiotics : François Teyssier Supernovae : Christian Buil VV Cep Stars : Olivier Thizy